THE E2C MECHANISM. CHARGE DISTRIBUTION AT \boldsymbol{C}_{α} IN E2C, $\boldsymbol{S}_{N}2$ AND SOLVOLYSIS TRANSITION STATES

D.J. Lloyd and A.J. Parker

Research School of Chemistry, Australian National University, P.O. Box 4, Canberra, A.C.T.

(Received in UK 23 October 1970; accepted for publication 13 November 1970)

The effects of para substituents on the 1-aryl-1-bromopropanes on the rates of their S_N^2 reactions (1a) with 0.04M NBu₄Cl in DMF at 25° , of their E2C-like dehydrobrominations (1b) with 0.10M NBu₄Br in acetone containing 0.05M 2,6-lutidine at 75° , and of their S_N^2 1 and E1 solvolyses (1c) in 90% acetone-water at 75° , are shown in the Table. The rates are compared with those of the corresponding reactions of 1-bromopropane and of the S_N^2 2 reactions (1d) of NBu₄Cl with substituted benzyl bromides and methyl bromide in acetone at 0° .

$$R = H$$
, C_6H_5 , $4-CH_3OC_6H_4$, $4-CH_3C_6H_4$, $4-NO_2C_6H_4$

Bunnett¹ has implied that many of those β -eliminations which are induced by weak hydrogen but strong carbon bases like halide ions and mercaptides, proceed through carbonium ion-like (paene-carbonium) E2 transition states, i.e. with positive charge at C_{α} and very little charge at C_{β} or H_{β} . On the other hand we would classify such eliminations as E2C-like reactions which proceed through olefin-like transition states, i.e. with C_{α} and C_{β} both possessing much sp² character, there being a well developed double bond between them, ^{2,3} and very loose bonds to base. If E2 transition states were preceded by formation of an intermediate ion pair, as envisaged by Sneen and Robbins⁴ for S_{N} 2 and E2 reactions, then a carbonium ion-like E2 transition state might be anticipated.

A carbonium ion-like E2 transition state is readily distinguished from an olefin-like E2 transition state by the effect on rate of changing substituents at C_{α} from electron withdrawing 5029

5030 No .57

to electron donating. It is important that changes in the steric effects and the ability of R in (1b) to conjugate with a developing double bond should be minimal. 2 This has been achieved in the E2C-like reactions of the 1-aryl-1-bromopropanes.

The S_N^2 reactions (1d) of the substituted benzyl bromides and of methyl bromide with NBu₄Cl in acetone, exhibit the usual^{5,6} activation by both electron withdrawing <u>para</u>-nitro and electron donating <u>para</u>-methoxyl groups, relative to para-hydrogen. This results in shallow "U-shaped" Hammett plots of log k versus σ or σ^+ . Despite their bulk, α -aryl substituents are almost as effective as α -hydrogen. The behaviour of the benzyl halides has been attributed to movement through a spectrum of transition states; from "tight", with electron withdrawing substituents, to "loose", with electron donating substituents, at C_α . There is some positive charge at C_α in a loose S_N^2 transition state, but very little, if any, in a tight S_N^2 transition state. The S_N^2 reactions (1a) of the 1-aryl-1-bromopropanes and of 1-bromopropane, although slower, show much the same features as the S_N^2 reactions (1d) of the benzyl bromides and methyl bromide. Both a <u>para</u>-nitro and a <u>para</u>-methyl substituent accelerate reaction, relative to <u>para</u>-hydrogen, but the overall effect is small.

The rates of the E2C-like dehydrobrominations (lb) of the 1-aryl-1-bromopropanes, like the S_N^2 reactions (la), are extremely insensitive to the nature of the 1-aryl substituent. Unlike the S_N^2 reactions (la), there is a substantial rate enhancement of the E2C reaction from an α -hydrogen to an α -aryl substituent. This is expected for E2C transition states if they are much looser than S_N^2 transition states, and is attributed to release of strain in the change from sp³ to sp² hybridisation at C_α . There is also a little conjugation of the aryl group with the developing double bond in the E2C transition state, but this is not as great as might be expected. The weak conjugation of substituents with the developing double bond remains a puzzling feature of E2C reactions.

There is absolutely no correlation between substituent effects in the S_N^1 reactions (1c) and the E2C reactions (1b) of the 1-aryl-1-bromopropanes and of 1-bromopropane. Not surprisingly, the S_N^1 solvolyses are strongly accelerated by <u>para-tolyl</u> and <u>para-anisyl</u> α -substituents, but are greatly slowed by para-nitrophenyl and hydrogen substituents relative to phenyl. A range of >10⁷ in rate for reaction (1c) is shown in the Table. The S_N^1 reactions have a carbonium ion-like transition state, as confirmed by the excellent correlation with Brown's σ^+ values and a ρ of -5.30. They are thus excellent models for substituent effects if Bunnett's putative "paene-carbonium E2 transition state" is utilised in the E2

dehydrobromination of these same substrates. However, as noted, the E2C-like reactions (1b) show no correlation with the S_N1 reactions (1c) of the same substrates. A Hammett plot versus σ^+ is very poor, but ρ could be no more than -0.6 for the E2C-like reactions. This is very much less than -5.30 observed for S_N1 reactions. We conclude that there is virtually no positive or negative charge at C_{α} in these E2C-like transition states and suggest that the concept of a spectrum of E2 transition states bounded at one extreme by a paene-carbonium E2 transition state, for elimination induced by weak hydrogen bases, can be discarded.

The substituent effects reported here are in accord with an olefin-like E2C transition state. We have noted previously 2,8 that electron-withdrawing (Br, CO₂Me) and electron donating (CH₃) substituents at C_{β} have much the same effect on the rate of E2C-like reactions. Thus similar effects at both C_{β} and C_{α} agree with the concept of little charge at C_{β} and C_{α} in the E2C-like transition state. The large rate-enhancing effects of all substituents studied, relative to a hydrogen substituent, show that the E2C transition state is not reactant-like, there are substantial changes in the hybridisation at C_{α} and C_{β}. The similarity in the small response of rates of S_N2 and E2C-like reactions to changes in α -aryl substituents is not because of identical S_N2 and E2C transition states, but it should be noted that S_N2 and E2C-like reactions of the same substrates, respond in virtually the same way to change of solvent, to change of base, to change of leaving group, and now to change of α -aryl substituent. Possibly related things are happening at C_{α} in the S_N2 and E2C-like transition states. This could be achieved by different interactions of base with C_{α} in both transition states.

 $\frac{\text{TABLE}}{\text{Rates of S}_{\text{N}}^{2}, \text{ E2C and Solvolysis } \left(S_{\text{N}}^{1} \text{ and E1}\right) \text{ Reactions } \left(1a - 1d\right)^{a}$

log k					
R ^a	S _N 2(1d) ^a at 0 ^o	S _N 2(1a) ^a at 250	E2C(1b) ^a at 75°	S _N 1 + El(1c) ^a at 75 ⁰	S _N 1 + E1(1c),a,e at 75°
Н	-0.8	-2.0	-5.943	(-8.1) ^d	-5.255
4-NO ₂ C ₆ H ₄	-0.96	-1.75 ^h	-3.585	(-7.3) ^d	-4.380
C ₆ H ₅	-1.81	-2.18 ^g	-3.364	-4.041	-1.160
4-CH ₃ C ₆ H ₄	~	-1.76 ^h	-2.910	-2.475	-
4-CH ₃ OC ₆ H ₄	-1.41	-	<-1.4 ^c	+0.1 ^f	-

^aNumbers in parenthesis refer to reactions described in the text. The first column $(S_{N}^{2}(1d))$ is for reactions of RCH₂Br, the remaining four columns are for reactions of RCHBrCH₂CH₂. $^{\rm b}$ k is a second order rate constant in M $^{\rm -1}$ sec. $^{\rm -1}$ for the S $_{\rm N}$ 2 and E2C-like reactions, but is a first order rate constant in sec. -1 for solvolysis (lc). CActual value is more negative. 1-p-anisyl-1-bromopropane could not be prepared in a pure state, its dehydrobromination by bromide ion in acetone at 75° can be no faster than this generous maximum value recorded, because the corresponding chloro derivative is solvolysed in dry acetone containing 0.04M NBu,ClO, and 0.05M 2,6-lutidine at 75°, with $k_1 = 6.14 \times 10^{-5} \text{ sec.}^{-1}$. The rate of acid production in the presence of 0.08M $NBu_4C1 + 0.05M$ lutidine is only a little faster, $k_1 = 6.72 \times 10^{-5}$ sec. -1, and in the presence of 0.04M NBuCl is 4.64×10^{-5} sec. $^{-1}$. Salt effects on the solvolysis rate We allocate no more than 50% of the acid production to a chloride ion induced E2C reaction and assume that chlorine is replaced not more than 100 times more rapidly than bromine in E2C reactions. We thus estimate this maximum value. dThese values are estimates of solvolysis rates in 90% acetone-water at 75° from the rates of solvolysis in 50% acetone-water at 75° which are recorded in the adjacent column (lc) l. eSee footnote d. fThis value estimated from the rate of solvolysis of 1-p-anisy1-1-chloropropane $(k_1 = 6.1 \times 10^{-2} \text{ sec.}^{-1})$ and of 1-phenyl-1-chloropropane $(k_1 = 5.0 \times 10^{-6} \text{ sec.}^{-1})$ in 90% acetone-water at 75° by assuming that the substituent effect on solvolysis of the bromides is similar to that for the chlorides. $^{
m g}$ The ${
m S_N}2$ reaction was accompanied by 0.86% chloride induced dehydrobromination.

 $^{
m h}$ Dehydrobromination was <0.2% of the bromide ion produced.

REFERENCES

- J.F. Bunnett, <u>Survey. Prog. Chem.</u>, <u>5</u>, 53 (1969); J.F. Bunnett and E. Baciocchi,
 <u>J. Org. Chem.</u>, <u>32</u>, 11 (1967).
- 2. G. Biale, D. Cook, D.J. Lloyd, A.J. Parker, I.D.R. Stevens, J. Takahashi, and S. Winstein, J. Am. Chem. Soc., 92, 000 (1970).
- 3. G. Biale, A.J. Parker, S.G. Smith, I.D.R. Stevens, and S. Winstein, <u>J. Am. Chem. Soc.</u>, <u>92</u>, 115 (1970).
- 4. R.A. Sneen and H.M. Robbins, <u>J. Am. Chem. Soc.</u>, <u>91</u>, 3100 (1969).
- 5. E.C.F. Ko and A.J. Parker, <u>J. Am. Chem. Soc.</u>, <u>90</u>, 6447 (1968).
- 6. R.F. Hudson and G. Klopman, J. Chem. Soc., 1062 (1962).
- J.E. Leffler and E. Grunwald, "Rates and Equilibria of Organic Reactions", p.191, Wiley, New York, 1963.
- 8. D. Cook, A.J. Parker, and M. Ruane, Tetrahedron Letters, 5715 (1968).
- 9. A.J. Parker, M. Ruane, G. Biale, and S. Winstein, Tetrahedron Letters, 2113 (1968).
- 10. D.J. Lloyd and A.J. Parker, Tetrahedron Letters, 5183 (1968).